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This paper describes a procedure for detecting structural damage based on a micro-
genetic algorithm using incomplete and noisy modal test data. As the number of sensors
used to measure modal data is normally small when compared with the degrees of freedom
of the finite element model of the structure, the incomplete mode shape data are first
expanded to match with all degrees of freedom of the finite element model under
consideration. The elemental energy quotient difference is then employed to locate the
damage domain approximately. Finally, a micro-genetic algorithm is used to quantify the
damage extent by minimizing the errors between the measured data and numerical results.
The process may be either of single-level or implemented through two-level search
strategies. The study has covered the use of frequencies only and the combined use of both
frequencies and mode shapes. The proposed method is applied to a single-span simply
supported beam and a three-span continuous beam with multiple damage locations. In the
study, the modal test data are simulated numerically using the finite element method. The
measurement errors of modal data are simulated by superimposing random noise with
appropriate magnitudes. The effectiveness of using frequencies and both frequencies and
mode shapes as the data for quantification of damage extent are examined. The effects of
incomplete and noisy modal test data on the accuracy of damage detection are also
discussed.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Civil engineering structures such as bridges and buildings are important assets to a nation.
However, they may be damaged during their service lives due to various reasons.
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.
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Undetected damage may cause catastrophic failure leading to loss of lives and properties.
It is certainly desirable to obtain information on the occurrence, the geometric location
and the severity of the structural damage at the earliest possible stage. If the ‘‘state of
health’’ of an important structure is constantly being monitored, its maintenance cost can
be kept to a reasonable minimum.

Damage detection methods of structural systems based on changes in their vibration
characteristics have been widely employed during the last two decades. Generally
speaking, existing methods include those based on examination of changes in frequencies,
mode shapes or mode shape curvatures, those based on dynamically measured flexibility
and those based on updating structural model parameters, etc. Doebling et al. [1]
published a state-of-the-art review on vibration-based damage identification methods
developed up to 1998. Since then, research work in this field continued to flourish [2–10].
They include the sensitivity and statistical-based method by Messina et al. [2], the modal
vibration characterization method using the vibratory residual forces and weighted
sensitivity analysis by Kosmatka and Ricles [3], the frequency- and curvature- based
experimental method by Ratcliffe [4], the method based on frequency measurement
assuming concentrated damage by Vestroni and Capecchi [5], the detection method using
singular value decomposition to deal with variations in dynamic behaviour by Ruotolo
et al. [6], the method using modal and sensor norms by Gawronski and Sawicki [7], the
measurement of operational deflection shapes by a scanning laser vibrometer by Pai and
Jin [8], an assessment method using a quadratic programming model while minimizing the
use of global numerical models and key material information by Hu et al. [9], a method for
large-scale structures using super-elements with the concept of damage-detection-
orientation-modelling [10], etc. Among various vibration-based damage detection
methods described, those based on updating structural model parameters can be reduced
to the solution of constrained optimization problems. Comparisons of the updated model
parameters with the original correlated model parameters provide an indication of damage
and can be used to quantify the location and extent of damage. However, for optimization
problems in which the objective function has many local maxima and minima, or when the
variables are combinations of many discrete and continuous variables, it is difficult to use
conventional optimization algorithms such as the conjugate gradient method to obtain the
global optimum.

In the last two decades, genetic algorithms [11] have been recognized as promising
intelligent search techniques for difficult optimization problems. Genetic algorithms are
stochastic search techniques based on the mechanism of natural selection and natural
genetics. They combine the principle of survival of the fittest among string structures with
a structured yet randomized information exchange to form a search algorithm with some
of innovative flair of human search. Genetic algorithms have actually found their
applications in structural damage identification [12–16].

Mares and Surace [12] employed a genetic algorithm to identify damage in elastic
structures. In their study, a modified version of residual force vectors in terms of the
stiffness matrix of the damaged structure was chosen as an objective function to be
minimized while stiffness reduction factors of all elements were chosen to be variables. It
implicitly means that the number of variables is equal to that of the elements in the finite
element (FE) model and therefore the damage detection procedure proposed is time
consuming for complex structures. In the study by Friswell et al. [13], a genetic algorithm
was used to optimize the discrete damage location variables and for a given damage
location site or sites, a standard eigensensitivity method was utilized to optimize the
damage extent. The discrete variables represented the damage locations, which might
cover all elements in the study. If a group of elements forming a possible damage domain
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can be first identified, the problem size will be reduced and consequently the efficiency and
effectiveness of the final stage of damage quantification will be improved.

More recently, Xia and Hao [14] employed a genetic algorithm with real number
encoding to identify the structural damage from vibration data. Three different criteria,
namely the frequency changes, the mode shape changes and their combination, are
considered in their study. Chou and Ghaboussi [15] used a genetic algorithm to solve an
optimization problem formulated for detection and identification of structural damage.
The ‘‘output error’’ indicating the difference between the measured and computed
responses under static loading and the ‘‘equation error’’ indicating the residual force in the
system of equilibrium equations are used to formulate the objective function to be
optimized. Harrison and Butler [16] developed a two-stage procedure for locating
delaminations within composite beams. To obtain the material properties and boundary
conditions of the analytical model, they used a gradient-based optimization technique to
minimize the difference of frequencies and mode shapes between the analytical model and
the experimental data. Then they employed either a gradient-based optimization technique
or a genetic algorithm to locate the delaminations. It was reported that a better solution
was obtained by using a genetic algorithm.

In this paper, a procedure for detecting structural damage based on a micro-genetic
algorithm using incomplete and noisy modal test data is described. In comparison with
traditional genetic algorithms, a genetic algorithm with small populations is called micro-
genetic algorithm. A serious limitation of traditional genetic algorithms is the time penalty
involved in evaluating the fitness functions for large populations, particularly in complex
problems [17]. Small populations could be used successfully with genetic algorithms if the
population is restarted a sufficient number of times [18]. The mode shape data are
incomplete because of the limited number of sensors used and the difficulty to measure the
rotational degrees of freedom (d.o.f.s). These incomplete data are first expanded to match
with all d.o.f.s of the FE model under consideration. The elemental energy quotient
difference is then employed to locate the damage domain approximately. Finally a micro-
genetic algorithm is used to quantify the damage extent by minimizing the errors between
the measured data and numerical results. For a complex structure, the candidates of
potential damage domain may still be many in spite of the use of elemental energy quotient
difference. A two-level search strategy is therefore proposed for quantification of the
damage extent, in which some of the potential damaged elements are first chosen and the
damage extents are subsequently evaluated for these chosen elements. The efficiency of the
proposed search strategy is compared with that of single-level search strategy that is
usually employed in the literature.

To examine the effectiveness of using modal parameters for quantification of damage
extent, two types of data have been used, i.e., the frequencies only and the combined use of
both frequencies and mode shapes. The proposed method is applied to a single-span
simply supported beam and a three-span continuous beam with multiple damage
locations. The effects of incomplete and noisy modal test data on the accuracy of damage
detection are also discussed.

2. DAMAGE DETECTION METHOD

2.1. EXPANSION OF INCOMPLETE MODE SHAPE DATA

As the number of sensors used to measure modal data is normally limited and the
rotational d.o.f.s are difficult to measure, the resulting incomplete mode shape data have
to be expanded to match with all d.o.f.s of the FE model under consideration. In the
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study, the system equivalent reduction expansion process (SEREP) [19] is employed to
expand the incomplete mode shape data. In this method, the total modal matrix of a
system is expressed as a linear combination of the eigenvectors from measured mode
shapes at limited locations. The total modal matrices Uua, Uum and Udm; and the mode
shape matrices Uuaa;Uuma and Udma at selected locations (i.e., the active d.o.f.s),
respectively, are related by a transformation matrix T as follows:

Uua ¼
Uuaa

Uuad

2
4

3
5 ¼ TUuaa; ð1Þ

Uum ¼
Uuma

Uumd

2
4

3
5 ¼ TUuma; ð2Þ

Udm ¼
Udma

Udmd

2
4

3
5 ¼ TUdma; ð3Þ

where the first subscripts u and d denote the undamaged and damaged structures,
respectively, the second subscripts a and m denote results from the FE analysis and the
measured data, respectively, and the third subscripts a and d denote active and deleted
d.o.f.s respectively. From equation (1), the transformation matrix T can be written as

T ¼ UuaðUT
uaaUuaaÞ�1UT

uaa: ð4Þ
Therefore, using the mode shapes obtained from the FE analysis, the transformation

matrix T can be obtained and then used to expand the measured mode shapes at the active
d.o.f.s to all d.o.f.s for both undamaged and damaged structures, respectively, according
to equations (2) and (3). In the study, the measured modal test data are simulated
numerically using the finite element method (FEM). The measurement errors of modal
data are simulated by superimposing random noise with appropriate magnitudes.

2.2. LOCATION OF DAMAGE DOMAIN

Once the expanded mode shapes of the undamaged and damaged structures are
available, the elemental energy quotient difference [20] is then employed to locate the
damage domain approximately. The elemental energy quotient difference (EEQD) of the
jth element corresponding to the ith mode is defined in terms of the elemental energy
quotients ðEEQÞuij; and ðEEQÞdij; respectively, for the undamaged and damaged structures
as

ðEEQDÞij ¼ ðEEQÞuij � ðEEQÞdij ¼
UT

umijKujUumij

UT
umijMjUumij

�
UT

dmijKujUdmij

UT
dmijMjUdmij

; ð5Þ

where Kuj and Mj are the stiffness and mass matrices, respectively, of the jth element of the
undamaged structure. The matrices Uumi and Udmi contain the measured ith mode shapes
of the undamaged and damaged structures respectively at the jth element. The quantity
ðEEQDÞij can be further normalized to become the elemental energy quotient difference
ratio ðEEQDRÞij as

ðEEQDRÞij ¼ jðEEQDÞij j=ðEEQÞuij : ð6Þ

If more than one measured mode is available, ðEEQDRÞij is computed for all the modes
and the parameter ðEEQDRÞj of the jth element is defined as the average of the quantities
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ðEEQDRÞij normalized with respect to the largest value ðEEQDRÞi;max among all elements
for each mode as

ðEEQDRÞj ¼
1

m

Xm

i¼1

ðEEQDRÞij=ðEEQDRÞi;max; ð7Þ

where m is the number of measured mode shapes. In the process of damage detection,
ðEEQDRÞj is computed for all the elements in the structure and those appearing as distinct
local peaks might indicate the locations of damage. Such information is often useful in
determining the possible damaged elements, which helps to limit the scope of search and
reduce the subsequent computations necessary.

2.3. QUANTIFICATION OF DAMAGE EXTENT

When the structure has been damaged, the stiffness matrix Kdj of the damaged jth
element can be represented as the stiffness matrix Kuj of the undamaged jth element
multiplied by a stiffness reduction factor bj reflecting the severity of the damage, i.e.,

Kdj ¼ bjKuj ; ð8Þ

Any possible non-linear behaviour of the damaged element is ignored for simplicity. The
damage extent may then be quantified by minimizing the errors between the measured
data and numerical results using a micro-genetic algorithm in which a small population
size is utilized. The evaluation of errors may use either the frequencies only or a
combination of both frequencies and mode shapes. The objective function F to be
minimized can be written, respectively, as

F ¼
Xm

i¼1

odmi � odai

odmi

� �2

ð9Þ

or

F ¼
Xm

i¼1

odmi � odai

odmi

� �2

þ
Xm

i¼1

kUdmi � Udaik
kUdmik

; ð10Þ

where odmi and Udmi are, respectively, the measured frequency and mode shape of the ith
mode of the damaged structure. Similarly, odai and Udai are the numerical counterparts
obtained from FE analysis. The variables to be optimized are the stiffness reduction
factors bj as defined in equation (8). The optimization of the stiffness reduction factors can
be written as

Min
b

F ; ð11Þ

where the vector b contains the stiffness reduction factors bj as

b ¼ ð b1 b2 ::: bNd
ÞT; ð12Þ

where Nd is the number of possible damage elements in the damage domain. In this paper,
the strategy to solve equation (11) directly is called the single-level search strategy. As a
group of elements forming a possible damage domain have been identified using the
parameter EEQDR as described above, the number of design variables is substantially
reduced. However, the value of Nd may still be large for a complex structure and it may be
much larger than its real value. For this case, a two-level search strategy is proposed in the
paper to quantify the damage extent.

Let Nrd denote the assumed number of damaged elements in a structure, which should
be much smaller than the value of Nd : In the two-level search strategy, Nrd elements are
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first chosen among the Nd candidates. Then the stiffness reduction factors of the Nrd

chosen elements are to be optimized by minimizing the objective function as defined in
equation (9) or (10). Another set of Nrd elements is then chosen and their reduction factors
are optimized until an optimal set of Nrd elements is obtained. The damage extent is
consequently evaluated in terms of the stiffness reduction factors corresponding to the
optimal set of Nrd elements. The procedure described above can be expressed in
mathematical form as follows:

Min
Id

F �;

F � ¼ Min
bId

F; ð13Þ

where Id is a vector whose components are the numberings of the elements chosen. It
implies that the design variables in the first level optimization are discrete ones. The
components of vector bId

are the stiffness reduction factors of the Nrd elements chosen and
they are continuous design variables.

3. ILLUSTRATIVE EXAMPLES

To evaluate the efficiency and effectiveness of the proposed method,
numerical simulations are carried out using modal test data, which may be complete
or incomplete, and noise-free or noisy. A single-span simply supported beam and a
three-span continuous beam are chosen for the purpose. In the study, the modal
test data are simulated numerically using an FE model. Only the first 5 modes are
utilized in damage detection. The natural frequencies are perturbed randomly by
1 and 2%, respectively, to simulate the measurement errors of modal data. Similarly,
5 and 10% random noise are superimposed on the exact mode shapes to obtain the noisy
data. Complete modal test data and incomplete sets comprising only the translational
d.o.f.s are separately tested. Six primary schemes as listed in Table 1 are considered for the
single-span simply supported beam, while only Schemes 1, 4A (i.e., Sub-case A of Scheme
4) and 5 are considered for the three-span continuous beam. In essence, Schemes 1 and 5
use frequency data only, whereas the rest use both frequency and mode shape data.
Schemes 3, 4 and 6 have Sub-cases A and B for noise level in mode shape data of 5 and
10%, respectively, as shown in Table 1. The stiffness reduction factors of possible
damaged elements indicating damage extent are solved by using single-level and two-level
search strategies. In the study, a micro-genetic algorithm with uniform crossover is
employed using the following parameters: crossover rate C ¼ 0	5; jump mutation rate
Mj ¼ 0	02; creep mutation rate Mc ¼ 0	04 and number of chromosomes (binary bits) per
parameter Nc ¼ 10: Both niching and elitism strategies are adopted in the genetic search
procedure.

3.1. EXAMPLE 1: A SINGLE-SPAN SIMPLY SUPPORTED BEAM

A single-span simply supported beam is first considered. The characteristics of the
original beam are as follows: modulus of elasticity E ¼ 3	0 
 1010 N/m2, mass density
r ¼ 2400 kg/m3, cross-sectional area A ¼ 1	796m2, second moment of area of cross-
section I ¼ 0	2356m4 and span length L ¼ 20m. In the study, the first five frequencies and
mode shapes are simulated numerically using an FE model with 16 elements of equal
length numbering sequentially from the left end to the right.



Table 1

Schemes for quantification of damage extent investigated

Scheme Description Percentage noise

Frequency (%) Mode shape (%)

1 Frequencies with 1% noise only 1 }
2 Frequencies with 1% noise, and complete exact

mode shapes
1 0

3A Frequencies with 1% noise, and complete but
noisy (5%) mode shapes

1 5

3B Frequencies with 1% noise, and complete but
noisy (10%) mode shapes

1 10

4A Frequencies with 1% noise, and incomplete noisy
(5%) mode shapes

1 5

4B Frequencies with 1% noise, and incomplete noisy
(10%) mode shapes

1 10

5 Frequencies with 2% noise only 2 }
6A Frequencies with 2% noise, and incomplete noisy

(5%) mode shapes
2 5

6B Frequencies with 2% noise, and incomplete noisy
(10%) mode shapes

2 10
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Figure 1. Single-span simply supported beam with damage at Elements 4 and 11: effect of incompleteness of
mode shape data on damage detection. (a) 5% noise; (b) 10% noise.
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Elements 4 and 11 have been damaged and this is simulated by reduction of their
bending stiffnesses with the factors b4 ¼ 0	5 and b11 ¼ 0	5: The damage locations
identified by EEQDR using 5 and 10% noise in the mode shapes, with complete and
incomplete modal test data, are shown in Figures 1 and 2. In particular, Figure 1 focuses
on the effects of incompleteness while Figure 2 focuses on the effects of noise. It can be
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seen that the use of the incomplete modes, i.e., all translational d.o.f.s only, can still locate
the damage domain approximately although it does have some adverse effects on the
identification results. It is also noted that relatively high noise in the mode shapes has
adverse effect on the accuracy of damage location, particularly if incomplete mode shapes
are used. Generally speaking, the parameter EEQDR can be employed to approximately
locate the damage spots of the structure under consideration using the incomplete mode
shapes with 5 and 10% random noise. Six different cases of possible damage domains are
assumed to examine their effect on the accuracy of damage extent determined, as shown in
Table 2. Notice that in Case 6, all 16 elements have been included in the possible damage
domain for comparison purpose. The stiffness reduction factors of possible damage
elements are computed using the proposed method with single-level search strategy and
given in Table 3.

Comparing the results of Schemes 1 and 5 in which only frequencies are used, it is found
that high noise in natural frequencies generally has adverse effects on the accuracy of
evaluating damage extent. It is also noted that incomplete modal test data decrease the
accuracy of damage detection, as is evident from examining the results for Schemes 3A,
3B, 4A and 4B. The accuracy of damage extents tends to decrease as the number of
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Figure 2. Single-span simply supported beam with damage at Elements 4 and 11: effect of noise of mode shape
data on damage detection. (a) Complete modal data; (b) incomplete modal data.

Table 2

Assumed damage domain for the single-span

simply supported beam

Case Damage domain

1 Elements 4 and 11
2 Elements 4, 11 and 14
3 Elements 4, 11 and 16
4 Elements 1, 4, 11 and 14
5 Elements 1, 4, 11 and 16
6 All 16 elements in the finite element model



Table 3

Evaluated damage extent for the single-span simply supported beam

Damage domain Scheme 1 Scheme 2 Scheme 3A Scheme 3B Scheme 4A Scheme 4B Scheme 5 Scheme 6A Scheme 6B

Case 1
4 0.4658 0.5007 0.5313 0.4668 0.5254 0.5664 0.4219 0.5756 0.5721

11 0.4541 0.4932 0.4766 0.5029 0.5645 0.5381 0.4287 0.5585 0.5371

Case 2
4 0.4678 0.4902 0.4629 0.4570 0.4932 0.5371 0.5078 0.4736 0.5527

11 0.5078 0.5010 0.5079 0.5039 0.5791 0.5801 0.4326 0.5539 0.5840
14 0.9760 0.9922 0.9375 0.9121 0.9453 0.8941 0.8047 0.9207 0.8841

Case 3
4 0.4492 0.5039 0.4727 0.4287 0.5513 0.5275 0.4463 0.5147 0.5335

11 0.5000 0.5039 0.5156 0.4668 0.5547 0.5635 0.4482 0.5586 0.5804
16 0.9289 0.9668 0.8721 0.8295 0.8613 0.8193 0.8019 0.8154 0.8030

Case 4
1 0.9666 0.9844 0.9922 0.9736 0.9951 0.9775 0.8145 0.9854 0.9767
4 0.4600 0.4941 0.4679 0.4434 0.5449 0.5645 0.4717 0.5613 0.6250

11 0.4785 0.5020 0.5073 0.4766 0.5674 0.5527 0.4355 0.5731 0.6250
14 0.9678 0.9824 0.9297 0.9021 0.9795 0.8736 0.8467 0.9049 0.9453

Case 5
1 0.9164 0.9922 0.9990 0.9326 0.9766 0.9980 0.8443 0.9805 0.9643
4 0.4521 0.4990 0.5000 0.4434 0.5156 0.5449 0.4258 0.5156 0.5664

11 0.5000 0.5156 0.4766 0.5010 0.5879 0.5361 0.4688 0.5723 0.5406
16 0.9568 0.9902 0.8506 0.8666 0.8262 0.8887 0.8863 0.8242 0.8651

Case 6
1 0.9971 0.9531 0.9941 0.9990 0.9990 0.9980 0.9775 0.9500 0.9790
2 0.9890 0.9678 0.9790 0.9781 0.8750 0.7646 0.9688 0.8541 0.7326
3 0.9762 0.9512 0.9668 0.9648 0.9990 0.9980 0.9727 0.8924 0.9421
4 0.5420 0.4873 0.4512 0.4053 0.5146 0.4951 0.5313 0.5049 0.4854
5 0.8877 0.9678 0.9697 0.9990 0.9541 0.9491 0.7646 0.9755 0.9660
6 0.7250 0.9639 0.9509 0.9951 0.9990 0.9540 0.6406 0.9990 0.9653
7 0.9961 0.9717 0.9473 0.9404 0.9385 0.9639 0.9980 0.8916 0.9473
8 0.9980 0.9365 0.8906 0.8271 0.9336 0.9385 0.9990 0.9297 0.9188
9 0.9990 0.9580 0.9814 0.9491 0.9150 0.7490 0.9990 0.9072 0.7200
10 0.9102 0.9688 0.8926 0.8691 0.8008 0.7549 0.8115 0.7490 0.7172
11 0.6500 0.4854 0.4984 0.4980 0.5469 0.5342 0.7617 0.5479 0.5225
12 0.9199 0.9757 0.9932 0.9912 0.8145 0.7412 0.9492 0.8750 0.7520
13 0.8623 0.9688 0.9970 0.9620 0.9851 0.9766 0.8506 0.9990 0.9512
14 0.9702 0.9600 0.8975 0.8486 0.9766 0.9863 0.9531 0.9609 0.9971
15 0.9491 0.9600 0.9736 0.9668 0.9688 0.8779 0.9854 0.9532 0.8477
16 0.9961 0.9609 0.8789 0.7852 0.8105 0.8545 0.9970 0.7959 0.8936

Note: figures in italics correspond to the damaged elements.
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elements forming a possible damage domain increases, which implies that incompleteness
of mode shapes and higher noise in mode shapes have adverse effects on the accuracy of
damage detection. This is because the use of incomplete and noisy mode shapes results in a
larger candidate set of damaged elements and this phenomenon is clearly shown in the
EEQDR plot in Figure 2(b). The use of polluted mode shapes together with the
frequencies may have favourable or unfavourable effects on the accuracy of damage
detection. For example, using the noisy mode shapes and measured frequencies with 1%
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Figure 3. Time ratios for Cases 1–6 for the single-span simply supported beam with damage at Elements 4
and 11. (a) Scheme 1; (b) Scheme 2.
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Figure 4. Three-span continuous beam with damage at Elements 8 and 41: EEQDR plot using incomplete
mode shapes with 5% noise.
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noise worsens the results for the structure considered. However, using the noisy mode
shapes together with 2% noise in frequencies improves them. When the exact mode shapes
are used together with frequencies with 1% noise, the damage extents of Elements 4 and
11, which have been assumed damaged, are very accurately evaluated.

For each of the six different damage domains listed in Table 2, the total computation
time is recorded, and it is indicative of the computational effort to converge to the stiffness
reduction factors. Taking the time of Case 1 as the benchmark, the time ratio for different
damage domains can be computed, which are shown in Figures 3(a) and 3(b) for Schemes
Table 4

Assumed damage domain for the three-span continuous beam

Case Damage domain Assumed no. of
damaged elements

Search strategy

1 1, 8, 13, 19, 22, 24, 28, 31, 35, 41, 43, 48 12 Single-level
2 1, 8, 13, 19, 22, 24, 28, 31, 35, 41, 43, 48 2 Two-level
3 1, 8, 13, 19, 22, 24, 28, 31, 35, 41, 43, 48 3 Two-level
4 1, 8, 13, 19, 22, 24, 28, 31, 35, 41, 43, 48 4 Two-level

Table 5

Evaluated damage extent for the three-span continuous beam

Case Assumed no. of Scheme 1 Scheme 4A Scheme 5
damaged elements

Elements
identified

Damage
extent

Elements
identified

Damage
extent

Elements
identified

Damage
extent

1 12 1 0.9678 1 0.9756 1 0.9521
8 0.5059 8 0.5322 8 0.5010
13 0.9277 13 0.9365 13 0.9980
19 0.9629 19 0.9971 19 0.9375
22 0.9795 22 0.8760 22 0.8340
24 0.9785 24 0.9355 24 0.9658
28 0.9766 28 0.9932 28 0.8496
31 0.9492 31 0.8184 31 0.9873
35 0.9980 35 0.9805 35 0.7793
41 0.5000 41 0.4990 41 0.5430
43 0.9375 43 0.9873 43 0.9902
48 0.9414 48 0.9473 48 0.9814

2 2 8 0.4845 8 0.5391 8 0.4766
41 0.4463 41 0.5547 41 0.4084

3 3 8 0.4375 8 0.4844 8 0.4766
22 0.9375 35 0.9297 41 0.5703
41 0.5313 41 0.5073 48 0.8125

4 4 8 0.5234 8 0.4453 8 0.5000
22 0.9219 41 0.4765 22 0.9422
28 0.9844 43 0.9140 41 0.4063
41 0.4297 48 0.9063 48 0.8823

Note: figures in italics correspond to the damaged elements.
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1 and 2 respectively. It is observed that the time ratio greatly increases as the number of
elements in the damage domain increases. This is because the search space expands
considerably as the number of elements included in the damage domain increases, and
therefore the time to search for the optimal solution increases.

3.2. EXAMPLE 2: A THREE-SPAN CONTINUOUS BEAM

A three-span continuous beam is next considered. Each span is equal to 20m and all
other parameters of the beam are the same as in Example 1. The modal test data for the
study are simulated using an FE model with 48 elements of equal length numbering
sequentially from the extreme left end to the right. Elements 8 and 41 have been damaged
and their stiffness reduction factors are b8 ¼ 0	5 and b41 ¼ 0	5: The plot of EEQDR using
incomplete modal test data comprising only the translational d.o.f.s with 5% noise are
depicted in Figure 4. From the figure, Elements 1, 8, 13, 19, 22, 24, 28, 31, 35, 41, 43 and 48
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Figure 5. Time ratios for Cases 1–4 for the three-span continuous beam with damage at Elements 8 and 41
(a) Scheme 1; (b) Scheme 4A; (c) Scheme 5.
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are identified as possible damage elements. To evaluate the efficiency of the two search
strategies as described above, the four cases as listed in Table 4 are tested for Schemes 1,
4A and 5 as described in Table 1. The evaluated damage extents for Cases 1–4 are shown
in Table 5. The effects of noise in frequency and mode shape data have similar trends as in
Example 1.

Time ratios are also computed for different cases with respect to that of Case 1, which is
taken as the benchmark. Figures 5(a), 5(b) and 5(c) show the time ratio for Schemes 1, 4A
and 5 respectively. It can be observed from Figure 5 that the two-level search strategy
saves computation time while it is still capable of obtaining satisfactory results of
evaluated damage extent for the beam under consideration.

4. CONCLUSIONS

A procedure for detecting structural damage using noisy and incomplete modal data is
described in this paper. The incomplete mode shape data are first expanded using the
system equivalent reduction expansion process to match with all degrees of freedom of the
finite element model of the structure under consideration. The element energy quotient
difference is then employed to locate the damage domain approximately. Finally, a micro-
genetic algorithm is used to quantify the damage extent by minimizing the errors between
the measured data and numerical predictions with different search strategies. Numerical
results show that incomplete and noisy modal data have adverse effect on the accuracy of
damage detection. However, the use of polluted mode shapes together with the frequencies
may have favourable or unfavourable effects on the accuracy of damage detection. In
addition, the two-level search strategy proposed is often more efficient in quantification of
damage extent than the single-level strategy when there are a lot of candidates in the
possible damage domain.
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